
Supplementary File

Table of Contents

AN INTRODUCTION TO REINFORCEMENT LEARNING ... 2

POLICY-BASED REINFORCEMENT LEARNING .. 4

POLICY GRADIENT...4

VALUE-BASED REINFORCEMENT LEARNING ... 5

Q-LEARNING..5
DQN AND ITS DERIVATIVES ..5
POLICY ITERATION AND VALUE ITERATION (FITTED Q ITERATION) ..6
ACTOR-CRITIC REINFORCEMENT LEARNING ...6

MODEL-BASED REINFORCEMENT LEARNING ... 6

INVERSE REINFORCEMENT LEARNING ... 7

REFERENCES .. 8

An Introduction to Reinforcement Learning
Reinforcement learning (RL) is one of the three main types of machine learning, where we may

be more familiar with the other two types: supervised learning and unsupervised learning.

Regressions and classifications are common supervised learning tasks and has been widely

applied in the healthcare domain. Supervised Learning is task-driven, because there are always

data labels to oversee or “supervise” the learning process. In contrast, unsupervised learning is

data-driven where the learning process totally depends on the inter- or intra-relations among

data clusters. Unlike supervised/unsupervised learning that learns the patterns or relations from

data directly, RL tries to understand the data by interacting with the environment where the

data came from. It is a goal-oriented learning algorithm wherein an agent or a decision maker

perform a task by taking some actions in the environment and get evaluative feedbacks on the

actions in each step, allowing it to improve the performance of subsequent actions.

RL has been applied in various types of applications, such as robots movement, Atari game,

autonomous vehicle, recommendation systems, financial investment etc. All the applications

share the common goal: to select the best actions that maximise total reward for all the steps

when interacting with an environment.

To achieve this goal, we need to take note of the unique characteristics in RL:

1. Actions may have long term consequences

2. Reward may be delayed

3. It may be better to sacrifice immediate reward to gain more long-term reward

With a chess game as an example, the very early moves for blocking the opponent might help

winning the game in the end.

All the RL applications have the same sets of “building blocks”, including

• States: Features space representing the environment, 𝑠𝑡

• Actions: A set of actions the agent can take, 𝑎𝑡

• Reward: The gain/loss of taking an action on a given state, 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡)

• Transition Function: It tells the agent what the next state would be if taking certain

action at the current state. 𝑃(𝑠𝑡+1| 𝑠𝑡 , 𝑎𝑡)

• Policy: A mapping of state and action space, 𝜋(𝑎|𝑠). The learning goal for RL can be

understood as finding a policy, i.e. a mapping from state to action that can maximize

accumulative reward: E[∑ 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)∞
𝑡=0] = E[∑ 𝑟𝑡

∞
𝑡=0]

Mathematically, RL can be described by a Markov Decision Process (MDP) as shown in the

following figure.

In a setting of a grid-world game (environment), the agent will need to walk from the start

position to the goal position through the white grids. We design the rules as follows:

• Reward: -1 per time-step (the agent need to take the shortest path to the goal position

to avoid negative reward)

• Actions: North, East, South, West in each step

• States: Agent’s location in the grid-world

The agent would be able to conquer the game in either of the two ways:

1) The agent knows which direction to take in each of the white grid. In another word, the

agent have a policy function, 𝛑(𝐬) that tells the direction to move (actions) for all the

states (shown as the red arrows).

2) The agent knows the value function, 𝐕(𝐬) in each white grid from which the agent

could compare the values for all adjacent states and take the action that leads to a state

with a larger value in the subsequent step. The value function evaluate the goodness of

states, and it could be written in another form with the action term: 𝐕(𝐬) =
𝑬𝒂∈𝑨[𝑸(𝒔, 𝒂)]. The value function for a state s, is the average value for all the possible

state-action pairs in that state. The value of the state-action pair 𝑸(𝒔, 𝒂) is called as Q-

function.

To summarise, an agent could solve an RL problem by either learning a policy function or a

value/Q-function. The RL algorithms that learn the policy function is called policy-based RL,

whereas those learn the value/Q-function is called value-based RL.

In the next section, we would introduction some common types of policy-based RL, value-

based RL and some other extensions.

Policy-based Reinforcement Learning
Policy Gradient
The policy gradient[1] methods target at modelling and optimizing the policy directly. The

policy 𝜋𝜃(𝑎|𝑠) is usually modelled by a neural network with parameter 𝜃. When an agent act

according to a policy 𝜋𝜃 from a random initial state 𝑠1, the policy will tell the agent to choose

action 𝑎1 under the state 𝑠1. The environment would respond to this action with a reward 𝑟1,

and would lead the agent to enter the next state 𝑠2. The state-action sequence would continue

to roll out to form a trajectory 𝜏, with reward at each step by following the policy 𝜋𝜃. The

objective of the agent is to continuously update the policy 𝜋𝜃, so that the average accumulated

reward 𝑅𝜃
̅̅̅̅ from the trajectory 𝜏 could be maximized. 𝑅𝜃

̅̅̅̅ = 𝐸𝜏~𝑝𝜃(𝜏)[𝑅(𝜏)]

The policy could be updated by adjusting the parameter 𝜃 by taking gradient to the reward 𝑅𝜃
̅̅̅̅

in the neural network. Therefore, this type of RL is named policy gradient.

Value-based Reinforcement Learning
Q-learning
The main idea for Q-learning[2] is to construct a reference map of values and state-action pairs,

so that given a random initial state 𝑠1, an agent would refer to the reference map to seek action

𝑎1 which maximize the value for state 𝑠1, 𝑄(𝑠1, 𝑎1). Q-function could be re-write in terms of

the reward: 𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1), where the value of the current state-

action pair 𝑄(𝑠𝑡 , 𝑎𝑡) is defined as the reward 𝑟(𝑠𝑡 , 𝑎𝑡) received from the current action plus the

estimate from the highest Q-value of the next possible state-action pair with a discount factor

γ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1). The discount factor γ has the value between 0 to 1 and it was used to

represent the decay effect of future reward w.r.t. time. The reward from near future would have

a greater impact than the reward from the future that is further away.

The reference map for state-action values can be construct using a table, named Q-table, where

each entry represents the value of one state-action pair. However, as the state/action space grow

in size, the number of entries in Q-table would have to grow geometrically to store all the

values, which makes Q-learning not feasible for problems with continuous state/action space.

DQN and its Derivatives
Deep Q Network (DQN)[3] is a derivative of Q-learning, where the Q-table is replaced by a

deep neural network (DNN) parametrized by θ, to represent the value of the state-action pairs.

The rule for updating parameter θ is to minimize the mean squared error (loss function) given

as

L(θ) = 0.5 ‖𝑄𝜃(𝑠𝑡 , 𝑎𝑡) − 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 max
𝑎𝑡+1

𝑄𝜃(𝑠𝑡+1, 𝑎𝑡+1)‖
2

Here the DQN algorithm suffer from a limitation of overestimation of Q-function, because both

Q-value 𝑄𝜃(𝑠𝑡 , 𝑎𝑡) and the action term max
𝑎𝑡+1

𝑄𝜃(𝑠𝑡+1, 𝑎𝑡+1) was chosen from the same network

modelled by 𝜃. To mitigate this issue, Hasselt et al. designed a model which could estimate the

Q-value and the action separately with two DQN network, Double DQN[4]. Therefore the loss

function of Double DQN becomes:

L(𝜃1, 𝜃2) = 0.5 ‖𝑄𝜃1(𝑠𝑡 , 𝑎𝑡) − 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 max
𝑎𝑡+1

𝑄𝜃2(𝑠𝑡+1, 𝑎𝑡+1)‖
2

where 𝜃1, 𝜃2 refers to the network parameters for the two DQN respectively.

Another modification on Double DQN is to separate the Q-value with two steams, value stream

and advantage steam, 𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑉(𝑠𝑡) − 𝐴(𝑠𝑡 , 𝑎𝑡). The network is called Double DQN

with Dueling[5]. The key motivation behind this architecture is that for some cases, it is

unnecessary to know the value of each action at every timestep. By explicitly separating two

estimators, the dueling architecture can learn which states are (or are not) valuable, without

having to learn the effect of each action for each state.

Policy Iteration and Value Iteration (Fitted Q iteration)
Policy Iteration [6] update a policy in 3 steps. The first step is the initialization of a random

policy 𝜋. The second component is policy evaluation. By policy evaluation, we mean that

following this policy, what should be the value of any state. As mentioned above, given a policy

π, the value of a state is the expected reward when the agent starts from s and follows π after

that. 𝑉(𝑠𝑡) = ∑ 𝑝𝜋(𝑠𝑡+1, 𝑟|𝑠𝑡)𝑠𝑡+1,𝑟 [𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 𝑉(𝑠𝑡+1) , where 𝑝𝜋(𝑠𝑡+1, 𝑟|𝑠𝑡) is the

probability of entering state 𝑠𝑡+1 with reward r by following the policy 𝜋 from state 𝑠𝑡. The

third component is policy improvement. Policy 𝜋 will be updated to 𝜋’ if the new policy

produce a higher value of 𝑉(𝑠𝑡). We run policy evaluation and improvement iteratively until

the policy becomes stable when none of the action maximization step in any state causes a

change in the policy.

Value Iteration[7] or Fitted Q Iteration[8] follows exactly the same steps as Policy Iteration.

The only difference is to replace the policy 𝜋 with an estimation with a value function, 𝜋 =
 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎).

Actor-Critic Reinforcement Learning
Actor-Critic RL [9] is a combination of policy-based RL and value-based RL. It has two

networks which are parameterized with DNN. One is called actor-network and the other one

called critic-network. The critic-network is similar as those value-based RL, where the network

estimate the value function or the Q-function. The actor-network updates policy as those in the

policy-based RL, where it improve the policy in the suggested by the critic-network. Actor-

Critic RL has two main advantages over pure policy-based and valued based RL. 1)

Convergence is guaranteed even for non-linear approximation of the value function (which is

not the case for Q-learning). 2) Actor-Critic RL reduce variance with respect to pure policy

search methods.

Model-based Reinforcement Learning
All the above discussed RL algorithms are all model-free RL, in which we assume the transition

function 𝑃(𝑠𝑡+1| 𝑠𝑡 , 𝑎𝑡) is unknown. Therefore, given the current state and action pair, the RL

agent won’t be able to tell what the real next state is. In fact, the model-free RL does not attempt

to learn the transition function explicitly. It bypasses the transition function by sampling from

the environment. While in model-based RL[10], the agent aims to learns the transition

function from the environment, so that given the current state and an action, an model-based

RL algorithm would estimate the probability of all possible next states. With model-based RL,

one can generate new samples from an environment easily.

In the model-based RL, we first act in the environment to collect a few trajectories of state-

action pairs. Then we deduce a model with DNN or Monte Carlo Tree Search. With this model,

we would be able to generate new trajectories. In the next step, we update the value function

or the policy function from the generated trajectories, and use the updated value function/

policy function to go back to the environment to select action. This process repeats over and

over again to gradually improve the model so that it fully represents the feedbacks from the

real environment.

Inverse Reinforcement Learning
In most RL algorithms, the reward function is hand-crafted without knowing the true reward.

This type of reward design is very vulnerable to misspecification. Inverse RL[11] can be the

alternative to the hand designed reward function where the Inverse RL learns the reward

directly through expert demonstrations. The Inverse RL aims to learn an optimal policies from

sub-optimal demonstrations. The goal of Inverse RL is to recover the right reward function.

The general idea behind Inverse RL with sampled trajectories is to iteratively improve a reward

function by comparing the value of the approximately optimal expert policy with a set of

generated policies. Here are a few key steps in Inverse RL.

1. Estimate the value of our optimal policy for the initial state 𝑉̂𝜋(𝑠1), as well as the value

of every generated policy 𝑉̂𝜋𝑖(𝑠1), by taking the average cumulative reward of many

randomly sampled trajectories.

2. Generate an estimate of the reward function R by solving a linear programming

problem. Specifically, set 𝛼𝑖 in reward function R(s) = 𝛼1∅1(𝑠) + 𝛼2∅2(𝑠) + ⋯ +
 𝛼𝑑∅𝑑(𝑠),to maximize the difference between our optimal policy and each of the other

k generated policies.

3. Repeat step 1 and 2 multiple iterations and add the newly generated policy the set of k

candidate policies, and repeat the procedures.

Another way to learn the reward function is through DNN, where the input to the DNN are the

state-action pairs (trajectories) produced by a sub-optimal policy , and the output of the DNN

is a reward 𝑅𝜑(𝑠, 𝑎), where 𝜑 is the parameters of the DNN that we would learn through

backpropagation.

References

1. Sutton, R.S., et al. Policy gradient methods for reinforcement learning with function
approximation. in Advances in neural information processing systems. 2000.

2. Watkins, C.J. and P. Dayan, Q-learning. Machine learning, 1992. 8(3-4): p. 279-292.
3. Mnih, V., et al., Human-level control through deep reinforcement learning. Nature,

2015. 518(7540): p. 529-533.
4. Van Hasselt, H., A. Guez, and D. Silver. Deep reinforcement learning with double q-

learning. in Thirtieth AAAI conference on artificial intelligence. 2016.
5. Wang, Z., et al., Dueling network architectures for deep reinforcement learning. arXiv

preprint arXiv:1511.06581, 2015.
6. Lagoudakis, M.G. and R. Parr, Least-squares policy iteration. Journal of machine

learning research, 2003. 4(Dec): p. 1107-1149.
7. Tamar, A., et al. Value iteration networks. in Advances in Neural Information

Processing Systems. 2016.
8. Riedmiller, M. Neural fitted Q iteration–first experiences with a data efficient neural

reinforcement learning method. in European Conference on Machine Learning. 2005.
Springer.

9. Grondman, I., et al., A survey of actor-critic reinforcement learning: Standard and
natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 2012. 42(6): p. 1291-1307.

10. Doya, K., et al., Multiple model-based reinforcement learning. Neural computation,
2002. 14(6): p. 1347-1369.

11. Ng, A.Y. and S.J. Russell. Algorithms for inverse reinforcement learning. in Icml. 2000.

	An Introduction to Reinforcement Learning
	Policy-based Reinforcement Learning
	Policy Gradient

	Value-based Reinforcement Learning
	Q-learning
	DQN and its Derivatives
	Policy Iteration and Value Iteration (Fitted Q iteration)
	Actor-Critic Reinforcement Learning

	Model-based Reinforcement Learning
	Inverse Reinforcement Learning
	References

